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Abstract. We study here numerically the behavior of an ideal gas like model of markets having only one
non-consumable commodity. We investigate the behavior of the steady-state distributions of money, com-
modity and total wealth, as the dynamics of trading or exchange of money and commodity proceeds,
with local (in time) fluctuations in the price of the commodity. These distributions are studied in markets
with agents having uniform and random saving factors. The self-organizing features in money distribution
are similar to the cases without any commodity (or with consumable commodities), while the commod-
ity distribution shows an exponential decay. The wealth distribution shows interesting behavior: gamma
like distribution for uniform saving propensity and has the same power-law tail, as that of the money
distribution, for a market with agents having random saving propensity.

PACS. 87.23.Ge Dynamics of social systems – 89.90.+n Other topics in areas of applied and interdisci-
plinary physics – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The study of wealth distribution [1] in a society has re-
mained an intriguing problem since Vilfredo Pareto who
first observed [2] that the number of rich people with
wealth m decay following an inverse power-law:

P (m) ∼ m−(1+ν). (1)

P (m) is the number density of people possessing wealth m
and ν is known as the Pareto exponent. This exponent
generally assumes a value between 1 and 3 in different
economies and times [1,3–5]. It is also known that for low
and medium income, the number density P (m) falls off
much faster: exponentially [3] or in a log-normal way [4].

In recent years, easy availability of data in electronic
media has helped in the analysis of wealth or income dis-
tributions in various societies [1]. It is now more or less es-
tablished that the distribution has a power-law tail for the
large (about 5% of the population) wealth/income while
the majority (around 95%) low income distribution fits
well to Gibbs or log-normal form [1–6].

There have been several attempts to model a simple
economy with minimum trading ingredients, which involve
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a wealth exchange process [1] that produce a distribution
of wealth similar to that observed in the real market. We
are particularly interested in microscopic models of mar-
kets where the (economic) trading activity is considered
as a scattering process [7–14] (see also reference [15] for
recent extensive reviews). We concentrate on models that
incorporate ‘saving propensity’ (of the agents) as an es-
sential ingredient in a trading process, and reproduces the
salient features seen across wealth distributions in var-
ied economies (see Ref. [16] for a review). Much earlier,
Angle [17] studied an inequality process, which can be
mapped to the uniform savings models is certain cases;
see reference [18] for a detailed review.

These studies also show (and discussed briefly here)
how the distribution of savings can be modified to re-
produce the salient features of empirical distributions of
wealth — namely the shape of the distribution for the
low and middle wealth and the tunable Pareto exponent.
In all these models [9–13], ‘savings’ was introduced as a
quenched parameter that remained invariant with time (or
trading).

Apart from presenting a brief summary in Section 2
(giving the established results in such models), we present
new results for a similar (gas like) market model, where
the exchange is for a non-consumable commodity (globally
conserved, like money). We find, although the details of
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the steady-state money and wealth (money and commod-
ity together) distributions differ considerably, the same
Pareto tail feature appears in both, with identical expo-
nent (ν) value.

2 Ideal-gas like models of trading markets
without any commodity

2.1 Without savings

We first consider an ideal-gas model of a closed economic
system. Wealth is measured in terms of the amount of
money possessed by an individual. Production is not al-
lowed i.e, total money M is fixed and also there is no
migration of population i.e, total number of agents N is
fixed, and the only economic activity is confined to trad-
ing. Each agent i, individual or corporate, possess money
mi(t) at time t. In any trading, a pair of agents i and j
randomly exchange their money [7–9], such that their to-
tal money is (locally) conserved and none posses negative
money (mi(t) ≥ 0, i.e, debt not allowed):

mi(t + 1) = mi(t) + ∆m; mj(t + 1) = mj(t) − ∆m (2)

∆m = ε(mi(t) + mj(t)) − mi(t); 0 ≤ ε ≤ 1. (3)

All the money transactions considered in this paper follow
local conservation:

mi(t) + mj(t) = mi(t + 1) + mj(t + 1). (4)

The time (t) changes by one unit after each trading and ε
is a random fraction chosen independently for each trading
or at each time t. The steady-state (t → ∞) distribution
of money is Gibbs one:

P (m) = (1/T ) exp(−m/T ); T = M/N. (5)

No matter how uniform or justified the initial distribution
is, the eventual steady state corresponds to Gibbs distri-
bution where most of the people have very little money.
This follows from the conservation of money and additiv-
ity of entropy:

P (m1)P (m2) = P (m1 + m2). (6)

This steady state result is quite robust and realistic. Sev-
eral variations of the trading [1], does not affect the dis-
tribution.

In any trading, savings come naturally [19]. A sav-
ing factor λ is therefore introduced in the same model [9]
(Ref. [8] is the model without savings), where each trader
at time t saves a fraction λ of its money mi(t) and trades
randomly with the rest. In each of the following two cases,
the savings fraction does not vary with time, and hence
we call it ‘quenched’ in the terminology of statistical me-
chanics.

2.2 Uniform savings

For the case of ‘uniform’ savings, the money exchange
rules remain the same (Eq. (2)), where

∆m = (1 − λ)[ε{mi(t) + mj(t)} − mi(t)], (7)

where ε is a random fraction, coming from the stochastic
nature of the trading. λ is a fraction (0 ≤ λ < 1) which
we call the saving factor.

The market (non-interacting at λ = 0 and 1) becomes
effectively ‘interacting’ for any non-vanishing λ(< 1): For
uniform λ (same for all agents), the steady state dis-
tribution Pf (m) of money is sharply decaying on both
sides with the most-probable money per agent shifting
away from m = 0 (for λ = 0) to M/N as λ → 1. The
self-organizing feature of this market, induced by sheer
self-interest of saving by each agent without any global
perspective, is very significant as the fraction of paupers
decrease with saving fraction λ and most people possess
some fraction of the average money in the market (for
λ → 1, the socialists’ dream is achieved with just peo-
ple’s self-interest of saving!). This uniform saving propen-
sity does not give the Pareto-like power-law distribution
yet, but the Markovian nature of the scattering or trad-
ing processes (Eq. (6)) is lost and the system becomes
co-operative. Through λ, the agents indirectly get to de-
velop a correlation with (start interacting with) each other
and the system co-operatively self-organizes [20] towards
a most-probable distribution.

This model has been understood to a certain extent
(see e.g, [21–23]), and argued to resemble a gamma distri-
bution [22], and partly explained analytically. This model
clearly finds its relevance in cases where the economy con-
sists of traders with ‘waged’ income [24].

2.3 Distributed savings

In a real society or economy, λ is a very inhomogeneous
parameter: the interest of saving varies from person to
person. We move a step closer to the real situation where
saving factor λ is widely distributed within the popula-
tion [11–13]. The evolution of money in such a trading
can be written as:

mi(t + 1) = λimi(t) + ε

× [(1 − λi)mi(t) + (1 − λj)mj(t)] , (8)

mj(t + 1) = λjmj(t) + (1 − ε)
× [(1 − λi)mi(t) + (1 − λj)mj(t)] . (9)

One again follows the same rules (Eq. (2)) as before, ex-
cept that

∆m = (1 − λj)εmj(t) − (1 − λi)(1 − ε)mi(t) (10)

here; λi and λj being the saving propensities of agents i
and j. The agents have uniform (over time) saving propen-
sities, distributed independently, randomly and uniformly
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(white) within an interval 0 to 1 agent i saves a random
fraction λi (0 ≤ λi < 1) and this λi value is quenched for
each agent (λi are independent of trading or t). P (m) is
found to follow a strict power-law decay. This decay fits
to Pareto law (1) with ν = 1.01±0.02 for several decades.
This power law is extremely robust: a distribution

ρ(λ) ∼ |λ0 − λ|α, λ0 �= 1, 0 ≤ λ < 1, (11)

of quenched λ values among the agents produce power law
distributed m with Pareto index ν = 1, irrespective of the
value of α. For negative α values, however, we get an initial
(small m) Gibbs-like decay in P (m). In case λ0 = 1, the
Pareto exponent is modified to ν = 1 + α, which qualifies
for the non-universal exponents in the same model [11,25].

This model [11] has been thoroughly analyzed, and
the analytical derivation of the Pareto exponent has been
achieved in certain cases [23,25,26]. The Pareto exponent
has been derived to exactly 1.

In this model, agents with higher saving propensity
tend to hold higher average wealth, which is justified by
the fact that the saving propensity in the rich population
is always high [28].

3 Ideal-gas trading market in presence
of a non-consumable commodity

In the above markets, modifications due to exchange of a
consumable commodity hardy affects the distribution, as
the commodity once bought or sold need not be accounted
for. Consumable commodities effectively have no ‘price’,
as due to their short lifetime to contribute to the total
wealth of an individual. It is interesting however, to study
the role of non-consumable commodities in such market
models and this we do here.

In the simplified version of a market with a single
non-consumable commodity, we again consider a fixed
number of traders or agents N who trade in a market
involving total money

∑
i mi(t) = M and total commod-

ity
∑

i ci(t) = C, mi(t) and ci(t) being the money and
commodity of the ith agent at time t and are both non-
negative. Needless to mention, both mi(t) and ci(t) change
with time or trading t. The market, as before is closed,
which means, N , M and C are constants. The wealth wi of
an individual i is thus, the sum of the money and commod-
ity it possesses, i.e., wi = mi+p0ci; p0 is the “global” price.
In course of trading, total money and total commodity are
locally conserved, and hence the total wealth. In such a
market, one can define a global average price parameter
p0 = M/C, which is set here to unity, giving wi = mi +ci.
It may be noted here that in order to avoid the compli-
cation of restricting the commodity-money exchange and
their reversal between the same agents, the Fisher veloc-
ity of money circulation (see e.g., Ref. [29]) is renormalised
to unity here. In order to accommodate the lack of proper
information and the ability of the agents to bargain etc.,
we will allow of course fluctuations δ in the price of the
commodities at any trading (time): p(t) = p0 ± δ = 1± δ.
We find, the nature of steady state to be unchanged and
independent of δ, once it becomes nonvanishing.

3.1 Dynamics

In general, the dynamics of money in this market looks the
same as equation (2), with ∆m given by equations (3, 7)
or (10) depending on whether λi = 0 for all, λi �= 0 but
uniform for all i or λi �= λj respectively. However, all
∆m are not allowed here; only those, for which ∆mi ≡
mi(t + 1) − mi(t) or ∆mj are allowed by the correspond-
ing changes ∆ci or ∆cj in their respective commodities
(∆m > 0, ∆c > 0):

ci(t + 1) = ci(t) +
mi(t + 1) − mi(t)

p(t)
(12)

cj(t + 1) = cj(t) − mj(t + 1) − mj(t)
p(t)

(13)

where p(t) is the local-time ‘price’ parameter, a stochastic
variable:

p(t) =
{

1 + δ with probability 0.5
1 − δ with probability 0.5. (14)

The role of the stochasticity in p(t) is to imitate the ef-
fect of bargaining in a trading process. δ parametrizes the
amount of stochasticity. The role of δ is significant in the
sense that it determines the (relaxation) time the whole
system takes to reach a dynamically equilibrium state; the
system reaches equilibrium sooner for larger δ, while its
magnitude does not affect the steady state distribution. It
may be noted that, in course of trading process, certain
exchanges are not allowed (e.g., in cases when a particular
pair of traders do not have enough commodity to exchange
in favor of an agreed exchange of money). We then skip
these steps and choose a new pair of agents for trading.

3.2 Results

For δ = 0, of course, the wealth of each agent remains in-
variant with time; only the proportion of money and com-
modity interchange within themselves, since the ‘price’
factor remains constant. This of course happens irrespec-
tive of the savings factor being zero, uniform or dis-
tributed. For δ = 0, the steady state distribution of money
or commodity can take non-trivial forms: (see Fig. 1), but
has strictly a δ-function behavior for the total wealth dis-
tribution; it gets frozen at the value of wealth one starts
with (see inset of Fig. 1 for the case mi = 1 = ci for all i).

As mentioned already for δ �= 0, the steady state re-
sults are not dependent on the value of δ (the relaxation
time of course decreases with increasing δ). In such a mar-
ket with uniform savings, money distribution P (m) has a
form similar to a set (for λ �= 0) of Gamma functions (see
Fig. 2): a set of curves with a most-probable value shifting
from 0 to 1 as saving factor λ changes from 0 to 1 (as in
the case without any commodity). The commodity distri-
bution P (c) has an initial peak and an exponential fall-
off, without much systematics with varying λ (see inset of
Fig. 2). The distribution P (w) of total wealth w = m + c
behaves much like P (m) (see Fig. 3). It is to be noted
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Fig. 1. Steady state distribution P (m) of money m in a market
with no savings (saving factor λ = 0) for no price fluctuations
i.e., δ = 0. The graphs show simulation results for a system
of N = 100 agents, M/N = 1, C/N = 1; mi = 1 = ci at t = 0
for all agents i. The inset shows the distribution P (w) of total
wealth w = m + c. As p = 1, for δ = 0, although m and c can
change with tradings within the limit (0–2) the sum is always
maintained at 2.
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Fig. 2. Steady state distribution P (m) of money m in the
uniform savings commodity market for different values of sav-
ing factor λ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 from left to
right near the origin) for δ = 0.05. The inset shows the distri-
bution P (c) of commodity c in the uniform savings commodity
market for different values of saving factor λ. The graphs show
simulation results for a system of N = 100 agents, M/N = 1,
C/N = 1.
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Fig. 3. Steady state distribution P (w) of total wealth w =
m + c in the uniform savings commodity market for different
values of saving factor λ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
from left to right) for δ = 0.05. The graphs show simulation
results for a system of N = 100 agents, M/N = 1, C/N = 1.
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Fig. 4. Steady state distribution P (m) of money m in the
commodity market with distributed savings 0 ≤ λ < 1. P (m)
has a power-law tail with Pareto index ν = 1 ± 0.02 (a power
law function x−2 is given for comparison). The inset shows
the distribution P (c) of commodity c in the same commodity
market. The graphs show simulation results for a system of
N = 1000 agents, M/N = 1, C/N = 1.
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Fig. 5. Steady state distribution P (w) of total wealth w =
m + c in the commodity market with distributed savings 0 ≤
λ < 1. P (w) has a power-law tail with Pareto index ν = 1 ±
0.05 (a power law function x−1 is given for comparison). The
inset shows the cumulative distribution Q(w) ≡ ∫ ∞

w
P (w)dw.

The graphs show simulation results for a system of N = 1000
agents, M/N = 1, C/N = 1.

that since there is no precise correspondence with com-
modity and money for δ �= 0 (unlike when δ = 0, when the
sum is fixed), P (w) cannot be derived directly from P (m)
and P (c). However, there are further interesting features.
Although they form a class of Gamma distributions, the
set of curves for different values of saving factor λ seem
to intersect at a common point, near w = 1. All the re-
ported data are for a system of N = 100 agents, with
M/N = 1 and C/N = 1 and for a case where the noise
level δ equals 10%.

For λ distributed uniformly within the interval 0 ≤
λ < 1, the tails of both money and wealth distributions
P (m) and P (w) have Pareto law behavior with a fitting
exponent value ν = 1± 0.02 and ν = 1± 0.05 respectively
(see Figs. 4 and 5 respectively), whereas the commodity
distribution is still exponentially decaying (see inset of
Fig. 4).
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4 Summary and conclusions

Let us first summarize the results for the models with-
out any commodity (money-only exchange models): there
are N players participating in a game, each having an
initial capital of one unit of money. N is very large, and
total money M = N remains fixed over the game (so also
the number of players N). (a) In the simplest version, the
only move at any time is that two of these players are ran-
domly chosen and they decide to share their total money
randomly among them. As one can easily guess, the ini-
tial uniform (a delta function) distribution of money will
soon disappear. Let us ask what the eventual steady state
distribution of money after many such moves will be? At
each move, a pair of randomly chosen players share a ran-
dom fraction of their total money among themselves. The
answer is well established in physics for more than a cen-
tury — soon, there will be a stable money distribution
and it will be Gibbs distribution: P (m) ∼ exp[−m/T ];
T = M/N [8]. (b) Now think of a modified move in this
game: each player ‘saves’ a fraction λ of the money avail-
able with him/her after each move and while going to the
next move. Everybody saves the same fraction λ. What
is the steady state distribution of money after a large
number of such moves? It becomes Gamma-function like,
while the distribution parameters of course depend on λ
(see Refs. [9,22]) see also references [17,18]; for a some-
what different model with similar results developed much
earlier. No exact treatment of this problem is available
so far. (c) What happens to the eventual money distri-
bution among these players if λ is not the same for all
players but is different for different players? Let the dis-
tribution ρ(λ) of saving propensity λ be such that ρ(λ)
is non-vanishing when λ → 1. The actual distribution
will depend on the saving propensity distribution ρ(λ),
but for all of them, the asymptotic form of the distribu-
tion will become Pareto-like: P (m) ∼ m−(1+ν); ν = 1 for
m → ∞. This is valid for all such distributions (unless
ρ(λ) ∝ (1 − λ)β , when P (m) ∼ m−(2+β)). However, for
variation of ρ(λ) such that ρ(λ) → 0 for λ < λ0, one will
get an initial Gamma function form for P (m) for small
and intermediate values of m, with parameters determined
by λ0 (�= 0), and this distribution will eventually become
Pareto-like for m → ∞ [11,12,23]. A somewhat rigorous
analytical treatment of this problem is now available [25].

A major limitation of these money-only exchange
models considered earlier [1,6–18,22,23,25–27] (and sum-
marised in (a), (b) and (c) above) is that it does not make
any explicit reference to the commodities exchanged with
the money and to the constraints they impose. Also, the
wealth is not just the money is possession (unless the com-
modity exchanged with the money is strictly consumable).
Here, we study the effect of a single non-consumable com-
modity on the money (and also wealth) distributions in
the steady state, allowing for the local (in time) price fluc-
tuation. This allowance of price fluctuation here is very
crucial for the model; it allows for the stochastic dynam-
ics to play its proper role in the market. As such, this
model is therefore quite different from that considered re-
cently in reference [30], where p0 is strictly unity and the

stochasticity enters from other exogenous factors. In the
sense that we also consider two exchangeable variables
in the market, our model has some similarity with that
in reference [31]. However, Silver et al. [31] consider only
random exchanges between them (keeping the total con-
served) while we consider random exchanges permitting
price fluctuations and savings. As such they get only the
Gamma distribution in wealth, while we get both Gamma
and Pareto distributions.

In spite of many significant effects due to the inclusion
of a non-consumable commodity, the general feature of
Gamma-like form of the money (and wealth) distributions
(for uniform λ) and the power law tails for both money
and wealth (for distributed λ) with identical exponents,
are seen to remain unchanged. The precise studies (the-
ories) for the money-only exchange models are therefore
extremely useful and relevant.

Specifically, we study here numerically the behavior of
an ideal gas like model of markets having only one non-
consumable commodity. The total amount of money in the
market M =

∑
i mi, i = 1, . . . , N is fixed, so is the total

amount of commodity C =
∑

i ci and of course the total
number of agents N in the market. As in the market there
is only one commodity, which is non-consumable, we nor-
malize its global price p0 = M/C to unity. The wealth of
any agent i at any time t is therefore wi(t) = mi(t)+ci(t).
If no fluctuation in price p is allowed (over p0), then the
money-commodity exchange leads to trivial money and
commodity distribution as shown in Figure 1, which keeps
the wealth of any agent unchanged over time. If we now
allow the price p(t) at any time to fluctuate over p0 by
a factor δ (as in (14)), nontrivial money, commodity and
wealth distributions set in (the steady states of which are
independent of δ; δ �= 0). We investigated here the behav-
ior of the steady-state distributions of money, commodity
and total wealth, as this dynamics of trading or exchange
of money or commodity proceeds, allowing for temporal
fluctuations in the price of the commodity. These distribu-
tions are studied in markets with agents having uniform
(see Figs. 2 and 3) and random saving factors (see Figs. 4
and 5). The self-organizing features in money distribu-
tion are similar to the cases without any commodity (or
with consumable commodities), the commodity distribu-
tion shows an exponential decay. The wealth distribution
shows interesting behavior: gamma like distribution for
uniform saving propensity and has a power-law tail (with
Pareto exponent value ν = 1) for a market with agents
having random saving propensity. Although our results
are numerical, and the Pareto behavior for the wealth
distribution tail gets somewhat more restricted in range
(compared to that of the money distribution; see Fig. 4),
the robustness of the power-law behavior nevertheless be-
comes obvious from, say Figure 4, where the power law
tail for the money distribution clearly dominates over the
commodity distribution tail, which rapidly decays off ex-
ponentially.

We are extremely grateful to Anindya-Sundar Chakrabarti for
useful suggestions and comments.
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